Dual solutions for double diffusion and MHD flow analysis of micropolar nanofluids with slip boundary condition
نویسندگان
چکیده
The present communication is designed to elucidate the flow attributes of micro-polar non-Newtonian liquid over stretching/shrinking surfaces. In addition, we have observed stagnation aspect along with velocity slip condition on momentum field. Fourier law heat conduct, a physical stratified and generation absorption, are then used model temperature equation. Buongiorno nanofluid study additional transport features. After discussion PDEs using similarity transformation, mathematical formulations given problem supported in form an ordinary differential system. solution modeled governing equations containing effects simulated by shooting method conjunction RK- Method. significant parameters that associated velocity, temperature, concentration distribution for low upper branch solutions revealed through graphs tables. Quantities engineering concerns like skin friction coefficient Nusselt number also compared previous results critical values. Furthermore, it should be considered as micro-pole increased, local amplitude rise.
منابع مشابه
Numerical Simulation of MHD Boundary Layer Stagnation Flow of Nanofluid over a Stretching Sheet with Slip and Convective Boundary Conditions
An investigation is carried out on MHD stagnation point flow of water-based nanofluids in which the heat and mass transfer includes the effects of slip and convective boundary conditions. Employing the similarity variables, the governing partial differential equations including continuity, momentum, energy, and concentration have been reduced to ordinary ones and solved by using...
متن کاملDouble Diffusive Magnetohydrodynamic (MHD) Mixed Convective Slip Flow along a Radiating Moving Vertical Flat Plate with Convective Boundary Condition
In this study combined heat and mass transfer by mixed convective flow along a moving vertical flat plate with hydrodynamic slip and thermal convective boundary condition is investigated. Using similarity variables, the governing nonlinear partial differential equations are converted into a system of coupled nonlinear ordinary differential equations. The transformed equations are then solved us...
متن کاملMHD Boundary Layer Flow and Heat Transfer of Newtonian Nanofluids over a Stretching Sheet with Variable Velocity and Temperature Distribution
Laminar boundary layer flow and heat transfer of Newtonian nanofluid over a stretching sheet with the sheet velocity distribution of the form (UW=cXβ) and the wall temperature distribution of the form (TW=T∞+aXr ) for the steady magnetohydrodynamic (MHD) is studied numerically. The governing momentum and energy equations are transformed to the local non-similarity equations using the appropriat...
متن کاملMHD boundary layer flow and heat transfer of Newtonian nanofluids over a stretching sheet with variable velocity and temperature distribution
Laminar boundary layer flow and heat transfer of Newtonian nanofluid over a stretching sheet with the sheet velocity distribution of the form (Uw=CXβ) and the wall temperature distribution of the form (Tw= T∞+ axr) for the steady magnetohydrodynamic(MHD) is studied numerically. The governing momentum and energy equations are transformed to the local non-similarity equations using the appropriat...
متن کاملMHD Slip Flow and Convective Heat Transfer of Nanofluids over a Permeable Stretching Surface
MHD slip flow and convective heat transfer of nanofluids over a vertical stretching surface subjected to injection has been analyzed. Two types of nanofluids such as Copper-Water nanofluid and Alumina-Water nanofluid are considered for the present study. The Boundary layer equations of motion and energy which are non-linear partial differential equations are reduced to non-linear ordinary diffe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Physics
سال: 2022
ISSN: ['2296-424X']
DOI: https://doi.org/10.3389/fphy.2022.956737